精英家教网 > 初中数学 > 题目详情

如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数数学公式的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.

解:(1)把A(-4,2)代入y=得m=-4×2=-8,
∴反比例函数的解析式为y=-
把B(n,-4)代入y=-得-4n=8,解得n=2,
∴B点坐标为(2,-4),
把A(-4,2)、B(2,-4)分别代入y=kx+b得,解方程组得
∴一次函数的解析式为y=-x-2;
(2)-4<x<0或x>2.
分析:(1)先把A(-4,2)代入y=求出m=-8,从而确定反比例函数的解析式为y=-;再把B(n,-4)代入y=-求出n=2,确定B点坐标为(2,-4),然后利用待定系数法确定一次函数的解析式;
(2)观察图象得到当-4<x<0或x>2 时,一次函数的图象都在反比例函数图象的下方,即一次函数的值小于反比例函数的值.
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标同时满足两个函数的解析式;求反比例函数图象与一次函数图象的交点坐标就是把两个图象的解析式组成方程组,方程组的解就是交点的坐标.也考查了待定系数法以及观察函数图象的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,过A作⊙O的切线,与BC的延长线交于D,且AD=
3
+1
,CD精英家教网=2,∠ADC=30°
(1)AC与BC的长;
(2)求∠ABC的度数;
(3)求弓形AmC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

40、尺规作图:如图,已知直线BC及其外一点P,利用尺规过点P作直线BC的平行线.(用两种方法,不要求写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:DE∥BC,AB=14,AC=18,AE=10,则AD的长为(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,已知直线AB∥CD,∠1=50°,则∠2=
50
度.

查看答案和解析>>

同步练习册答案