精英家教网 > 初中数学 > 题目详情

作业宝如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
(1)求证:AE=AF;  
(2)求证:CD=2BE+DE.

证明:(1)如图,∵∠BAC=90°,AF⊥AE,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
∵BE⊥CD,
∴∠BEC=90°,
∴∠EBD+∠EDB=∠ADC+∠ACD=90°,
∵∠EDB=∠ADC,
∴∠EBA=∠ACF,
∴在△AEB与△AFC中,
∴△AEB≌△AFC(SAS)
∴AE=AF;
                    
(2)如图,过点A作AG⊥EC,垂足为G.
∵AG⊥EC,BE⊥CD,
∴∠BED=∠AGD=90°,
∵点是AB的中点,
∴BD=AD.
∴在△BED与△AGD中,
∴△BED≌△AGD(AAS),
∴ED=GD,BE=AG,
∵AE=AF
∴∠AEF=∠AFE=45°
∴∠FAG=45°
∴∠GAF=∠GFA,
∴GA=GF,
∴CF=BE=AG=GF,
∵CD=DG+GF+FC,
∴CD=DE+BE+BE,
∴CD=2BE+DE.
分析:(1)通过证△AEB≌△AFC(SAS),得到AE=AF;
(2)如图,过点A作AG⊥EC,垂足为G,通过证△BED≌△AGD(AAS),得到ED=GD,BE=AG,易证CF=BE=AG=GF.因为CD=DG+GF+FC,所以CD=DE+BE+BE,故
CD=2BE+DE.
点评:本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案