精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,AB=AC,∠BAC=α,且60°<α<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°﹣α.①用含α的代数式表示∠APC;②求证:∠BAP=∠PCB;③求∠PBC的度数.
①解:∵AB=AC,∠BAC=α,PC=AC,
∴∠CPA=∠CAP,∠BCA=∠ABC,
∵∠CAP+∠CPA+∠ACP=180°,
∴∠CPA=∠CAP=(180°﹣∠ACP)÷2=(60°+α)÷2=30°+
②证明:∵∠BAP=∠BAC﹣∠CAP,∠BAC=α,∠CAP=30°+
∴∠BAP=∠BAC﹣∠CAP=α﹣(30°+)=﹣30°,
∴∠BCA=∠ABC=(180﹣a)÷2=90°﹣
∴∠PCB=∠BCA﹣∠ACP=90﹣﹣(120°﹣α)=﹣30°,
∴∠BAP=∠PC,
③解:分别延长CP、AP交BC于F点,交AB于E点,
∵∠BAP=∠PCB,
∴∠PFB=∠PEB,
∴A,E,F,C四点共圆,
∴∠EFB=∠BAC=α,∠EFA=∠ECA,∠FEC=∠CAF,
∴BF=EF,EF=PF,
∴BF=PF
∴∠AFC=∠ABC+∠BAF=90°﹣+﹣30°=60°,
∴∠PBC=∠BPF=30°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案