精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,AE平分∠DAC,∠B=50°,
求∠BAD和∠AEC的度数.

解:在△ABC中,
∵∠BAC=90°,∠B=50°,
∴∠C=90°-∠B=40°,
∵AD⊥BC于点D,
∴∠BAD=90°-∠B=40°;
在△ADC中,
∵∠ADC=90°,∠C=40°,
∴∠DAC=90°-∠C=50°,
∵AE平分∠DAC,
∴∠DAE=∠DAC=25°,
在△DAE中,
∵∠ADE=90°,∠DAE=25°,
∴∠AED=90°-∠DAE=65°,
∴∠AEC=180°-∠AED=180°-65°=115°.
分析:先由三角形内角和定理求出∠C的度数,再由直角三角形的性质即可求出∠BAD的度数;在△ADC中,由
∠ADC=90°,∠C=40°可得出∠DAC的度数,再由角平分线的性质即可求出∠DAE的度数,再由直角三角形的性质求出∠AED的度数,由两角互补的性质即可得出∠AEC的度数.
点评:本题考查的是三角形内角和定理、角平分线的性质及两角互补的性质,熟知三角形的内角和是180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案