精英家教网 > 初中数学 > 题目详情

一次课外实践活动中,一个小组测量旗杆的高度如图,在A处用测角仪(离地高度为1.2米)测得旗杆顶端的仰角为15°,朝旗杆方向前进20米到B处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度.

解:由已知∠ECD=15°,∠EDF=30°,
所以∠CED=15°,
∴∠CED=∠ECD,
∴DC=DE=20,
在Rt△DEF中,
,得:
EF=DE•sin∠EDF=20×sin30°=10,
又FG=CA=1.2米,
因此EG=EF+FG=10+1.2=11.2(米),
答:旗杆EG的高度为11.2米.
分析:首先分析图形:根据题意构造直角三角形,利用在Rt△DEF中,由,得出EF的长度,进而可求出答案.
点评:此题主要考查了仰角问题应用,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在一次课外实践活动中,有两个课题学习小组分别用测倾器、皮尺测量旗杆和小山的高度,他们分别设计了如下方案:
第一组,测量旗杆(图-):①在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;②量出测点A到旗杆底部N的水平距离AN=m;量出测倾器的高度AC=h.
第二组,测量某小山的高度(图二),他们测量时所填写的表格如下:
题目   测量小山的高度
 

测量数据
 测量项目 测倾器高度 
 仰角α 20°30′       1.2米
 仰角β  30°    小山高度
 AB的距离           
(1)请你求出旗杆的高度(用已知的字母表示);
(2)第二小组记录的同学不小心将AB的距离弄模糊了,请你填上一个较合理的数据,并由此求出小山PH的高度(结果精确到个位).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次课外实践活动中,同学们要测湘江河的宽度.如图1所示,小明先在河西选定建筑物A,并在河东岸的B处观察,此时视线BA在河岸BE所成的夹角∠ABE=32°,小明沿河岸BE走了400精英家教网米到C处,再观察A,此时视线CA与河岸所成的夹角∠ACE=64°.
(1)请你根据以上数据,帮助小明计算出湘江河的宽度(结果精确到0.1米).
(2)求出湘江河宽后,小明突发奇想,欲求B的正对岸建筑物的高度MN(如图2所示),现测得小明的眼睛与地面的距离(FB)是1.6m,看建筑物顶部M的仰角(∠MFG)是8°,BN为湘江河宽,求建筑物的高度MN(结果精确到0.1米).
(提示:河的两岸互相平行;参考数值:sin32°≈0.530;cos32°≈0.848;
tan32°≈0.625;sin64°≈0.900;cos64°≈0.438;tan64°≈2.050;
sin8°≈0.139;cos8°≈0.990;tan8°≈0.141)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在一次课外实践活动中,同学们要知道校园内A,B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=120°,请计算A,B两处之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•市南区模拟)在一次课外实践活动中,同学们要测量某公园人工湖两侧A、B两个凉亭之间的距离.现测得AC=30m,∠B=37°,∠CAE=64°,请你求出A、B两个凉亭之间的距离(结果精确到1m).(参考数据:sin37°≈
3
5
,tan37°≈
3
4
,sin64°≈
9
10
,cos64°≈
4
9

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次课外实践活动中,同学们要知道校园内A、B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=60°,请计算A、B两处之间的距离.

查看答案和解析>>

同步练习册答案