精英家教网 > 初中数学 > 题目详情

如图,抛物线y=数学公式x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)若E是抛物线上异于C的点,且S△ABE=S△ABC,则满足条件的点E有______ 个;
(3)判断△ABC的形状,证明你的结论.

解:(1)∵抛物线y=x2+bx-2过A(-1,0)点,
∴0=×1+b×(-1)-2,
∴b=-
∴抛物线的解析式为:y=x2-x-2,
∴y=x2-x-2,
=(x2-3x)-2,
=(x2-3x+-)-2,
=(x-2--2,
=(x-2-
∴顶点D的坐标为(,-);

(2)∵E是抛物线上异于C的点,且S△ABE=S△ABC
∴只需满足E到x轴的距离等于C到x轴的距离即可,
∴满足条件的点E有3个;

(3)∵抛物线的解析式为:y=x2-x-2=(x-2-
∴当y=0,
∴0=(x-2-
解得:x1=4,x2=-1,
∴A(-1,0),B(4,0),
当x=0,y=-2,
∴AO=1,CO=2,
∴AC=
BO=4,
∴BC=2
∴AB=5,
∵AC2=5,BC2=20,AB2=25,
∴AC2+BC2=AB2
∴△ABC是直角三角形.
分析:(1)根据抛物线y=x2+bx-2过A(-1,0)点,直接求出b的值,再根据配方法求出二次函数顶点坐标即可;
(2)根据三角形面积求法得出等底同高面积相等,即可得出符合要求的答案;
(3)分别求出三角形三边,即可得出三角形的形状.
点评:此题主要考查了配方法求二次函数顶点坐标以及三角形面积求法和三角形形状的判定方法,此题基础性较强,主要结合图形分析注意计算的正确性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y
0(填“>”“=”或“<”号).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=x2+(k2+1)x+k+1的对称轴是直线x=-1,且顶点在x轴上方.设M是直线x=-1左侧抛物线上的一动点,过点M作x轴的垂线MG,垂足为G,过点M作直线x=-1的垂线MN,垂足为N,直线x=-1与x轴的交于H点,若M点的横坐标为x,矩形MNHG的周长为l.
(1)求出k的值;
(2)写出l关于x的函数解析式;
(3)是否存在点M,使矩形MNHG的周长最小?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2-2x-3与x轴分别交于A,B两点.
(1)求A,B两点的坐标;
(2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由)

查看答案和解析>>

同步练习册答案