精英家教网 > 初中数学 > 题目详情
13.为了对中小学进行传统文化教育,上级主管部门开展了“送戏下乡”活动,某九年一贯制学校为了了解本校1600名学生对“送戏下乡”的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).
(1)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本次“送戏下乡”的学生大约有多少名?
(2)在这次调查中,四年级共有甲、乙、丙、丁四人“特别关注”本次“送戏下乡”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.

分析 (1)根据扇形统计图找出关注“送戏下乡”活动的百分比,乘以1600即可得到结果;
(2)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.

解答 解:(1)1600×(1-45%)=880(人).
∴该校关注本次“送戏下乡”的学生大约有880人.     
(2)画树状图,如图所示:

由图可知,共有12种等可能结果,其中恰好是甲和乙的有2种结果.
∴P(恰好是甲和乙)=$\frac{2}{12}$=$\frac{1}{6}$.

点评 本题考查的是条形统计图和扇形统计图以及求随机事件的概率问题的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知a,b都是实数,且(12a+b)2+|3a-b-5|=0,求13a2-b的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,矩形ABCD中,AB=7cm,AD=4cm,点E为AD上一定点,F为AD延长线上一点,且DF=acm,点P从A点出发,沿AB边向点B以2cm/s的速度运动,运动到B点停止,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当0≤t≤1时,△PAE的面积y(cm2)关于时间t(s)的函数图象如图2所示,连结PF,交CD于点H.
(1)t的取值范围为0≤t≤3.5,AE=1cm;
(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?
(3)在(2)的条件下求出点P的运动时间t.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,A、B两点在反比例函数y=$\frac{k}{x}$(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1
(1)若k=2,则AO的长为$\sqrt{5}$,△BOD的面积为1;
(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解下列方程组
(1)$\left\{\begin{array}{l}{y-2x=1}\\{3y+2x=19}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y}{3}=1}\\{3x-5y=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=$\frac{m}{x}$的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)结合图象直接写出不等式kx+b<$\frac{m}{x}$的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知$\sqrt{x-2}$+$\sqrt{y+5}$=0,则x=2,y=-5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格中的两个格点(即网格中横、纵线的交点),在这个5×5的方格纸中,格点C使△ABC的面积为2个平方单位,则图中这样的点C有(  )个.
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.抛物线y=x2+bx+c(b<0)的顶点是D,与x轴交于点A和点B(A在B的左侧),与y轴交于点C,连接CD,将线段CD绕点C顺时针旋转90°得到线段CD′,且D′(-4,1)
(1)求抛物线的解析式:
(2)E是抛物线上一点,△BCE是以BC为斜边的直角三角形,求点E的坐标:
(3)在抛物线上是否存在点P,使点P关于直线CD的对称点P′恰好落在x轴上?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案