精英家教网 > 初中数学 > 题目详情

如图,△ABC和△BEF都是正三角形,AF与BC交于点M,BF与EC交于点N,则下面三个结论中,正确的结论有______个.
(1)AF=CE;
(2)MN∥AE;
(3)AC⊥CE的充分必要条件是AF⊥EF.

解:①∵△ABC和△BFE均是等边三角形,
∴AB=BC,EB=BF,∠ABC=∠FBE=60°,
∴∠CBE=∠ABF,
∴△ABF≌△CBE,
∴AF=CE,故①正确;
②∵△ABF≌△CBE,
∴∠BCN=∠BAM,
又∵∠ABC=∠CBN=60°,CB=AC,
∴△ABM≌△CBN,
∴BM=NB,又∠CBF=60°,
∴△BNM为等边三角形,
∴∠BMN=60°=∠ABC,
∴NM∥AE,故②正确;
③∵△ABC和△BFE均是等边三角形,
∴∠ACB=∠BFE=60°,
∵AF⊥EF,
∴∠AFE=90°,
∴∠AFB=30°,
∵△ABF≌△CBE,
∴∠AFB=∠CEB=30°,
∵∠CBE=∠CBF+∠FBE=120°,
∴∠BCE=180°-120°-30°=30°,
∴∠ACB=60°+30°=90°,
即:AC⊥CE,
故③正确.
故答案为:3.
分析:首先证明△ABF≌△CBE,再根据全等三角形的性质可判定出①的正误;再证明△ABM≌△CBN,可以得到BM=NB,然后证明△BNM为等边三角形,可得∠BMN=60°=∠ABC,进而得到②的正误;计算出∠AFB和∠BCE的度数即可得到③的正误.
点评:此题主要考查了等边三角形的性质,全等三角形的判定与性质,解决此题的关键是证明△ABF≌△CBE,△ABM≌△CBN,并熟练掌握全等三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连CF,
(1)如图1,当D点在BC上时,BE与CF的数量关系是
 
,位置关系是
 
,请证明.
精英家教网
(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.
(3)如图3,把△DEC绕C点顺时针旋转45°,若∠DCF=30°,直接写出
BGCG
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,点C在AD上,如果△ABC经旋转后能与△ADE重合,那么点
A
是旋转中心,旋转的最小度数为
45
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,BC=3,CD=1.
(1)求证:tan∠AEC=
BCCD

(2)请探究BM与DM的数量关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交 CE于点G,连接BE.下列结论中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求证:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度数;
(3)在(2)的条件下,直接写出DE的长为
2
10
2
10
.(只填结果,不用写出计算过程)

查看答案和解析>>

同步练习册答案