如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
|
分析:(1)连接OD,根据切线的性质以及BH⊥EF,即可证得OD∥BC,然后根据等边对等角即可证得; (2)过点O作OG⊥BC于点G,则利用垂径定理即可求得BG的长,然后在直角△OBG中利用勾股定理即可求解. 解答:(1)证明:连接OD, ∵EF是⊙O的切线, ∴OD⊥EF, 又∵BH⊥EF, ∴OD∥BH, ∴∠ODB=∠DBH, ∵OD=OB, ∴∠ODB=∠OBD ∴∠OBD=∠DBH, ∴BD平分∠ABH. (2)解:过点O作OG⊥BC于点G,则BG=CG=4, 在Rt△OBG中,OG=
点评:本题考查了切线的性质定理,以及勾股定理,注意到OD∥BC是关键. |
|
切线的性质;勾股定理;垂径定理;圆周角定理. |
科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013
如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=
A.60°
B.65°
C.67.5°
D.75°
查看答案和解析>>
科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com