精英家教网 > 初中数学 > 题目详情

如图,已知A、B是反比例函数数学公式上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.
解答:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;
②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l-at),因为l,OC,a均是常数,
所以S与t成一次函数关系.故排除C.
故选A.
点评:本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平行四边形ABCD,E是对角线AC延长线上的一点,
(1)若四边形ABCD是菱形,求证:BE=DE;
(2)写出(1)的逆命题,并判断其是真命题还是假命题,若是真命题,试给出证明;若是假命题,试举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

判断下列命题的真假,并给出证明(若是真命题给出证明,若是假命题举出反例):
(1)若
a2
=3
,则a=3;
(2)如图,已知BE⊥AD,CF⊥AD,垂足分别为点E,F,且BE=CF.则AD是△ABC的中线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整.
∵EF∥AD,
已知
已知

∴∠2=
∠3
∠3
两直线平行,同位角相等
两直线平行,同位角相等

又∵∠1=∠2,
已知
已知

∴∠1=∠3.
等量代换
等量代换

∴AB∥
DG
DG
内错角相等,两直线平行
内错角相等,两直线平行

∴∠BAC+
∠AGD
∠AGD
=180°.
两直线平行,同旁内角互补
两直线平行,同旁内角互补

又∵∠BAC=70°,
已知
已知

∴∠AGD=
110°
110°
数据计算
数据计算

(2)如图,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠DEC的度数.
(3)一个多边形的每一个外角都等于24°,求这个多边形的边数.
(4)判断下列命题是真命题还是假命题,如果是真命题,指出命题的题设和结论;如果是假命题举出一个反例
①相等的角是对顶角;              ②两直线平行,内错角相等.

查看答案和解析>>

科目:初中数学 来源:第27章《相似》中考题集(28):27.2 相似三角形(解析版) 题型:解答题

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.

查看答案和解析>>

同步练习册答案