精英家教网 > 初中数学 > 题目详情

a、b是同一平面内的两条不重合的直线,则a、b的位置关系是

[  ]

A.一定平行
B.一定相交
C.平行或相交
D.平行且相交
答案:C
解析:

同一平面内的两条不重合的直线的位置关系是可能平行,可能相交

故选C


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h精英家教网,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.
(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.
(2)求h的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)解方程:
2
x
-
2
x(x+1)
=1

(2)已知△ABC(如图1),请用直尺(没有刻度)和圆规,作一个平行四边形,使它的三个顶点恰好是△ABC的三个顶点(只需作一个,不必写作法,但要保留作图痕迹)
精英家教网
(3)根据题意,完成下列填空:
如图2,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3直线L3,那么这3条直线最多可有
 
个交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有
 
个交点.由此我们可以猜想:在同一平面内,6条直线最多可有
 
个交点,n( n为大于1的整数)条直线最多可有
 
个交点(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意完成下列填空:
L1和L2是同一平面内的2条相交直线,它们有1个交点,如果在这个平面内再画第三条直线L3,那么这3条直线最多可有
 
个交点;如果在这个平面内再画第四条直线L4,那么这4条直线最多可有
 
个交点,由此我们猜想,在同一平面内,6条直线最多可有
 
个交点,n(n为大于1的整数)条直线最多可有
 
个交点(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,L1,L2,L3是同一平面内的三条平行直线,L1与L2间的距离是1,L2与L3间的距离是2,正三角形ABC的三顶点分别在L1,L2,L3上,求△ABC的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海淀区一模)问题:如图1,a、b、c、d是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形ABCD,使它的顶点A、B、C、D分别在直线a、b、d、c上,并计算它的边长.

小明的思考过程:
他利用图1中的等距平行线构造了3×3的正方形网格,得到了辅助正方形EFGH,如图2所示,再分别找到它的四条边的三等分点A、B、C、D,就可以画出一个满足题目要求的正方形.
请回答:图2中正方形ABCD的边长为
5
5

请参考小明的方法,解决下列问题:
(1)请在图3的菱形网格(最小的菱形有一个内角为60°,边长为1)中,画出一个等边△ABC,使它的顶点A、B、C落在格点上,且分别在直线a、b、c上;
(3)如图4,l1、l2、l3是同一平面内的三条平行线,l1、l2之间的距离是
21
5
,l2、l3之间的距离是
21
10
,等边△ABC的三个顶点分别在l1、l2、l3上,直接写出△ABC的边长.

查看答案和解析>>

同步练习册答案