精英家教网 > 初中数学 > 题目详情
已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为(  )
A.
6
3
B.
5
3
C.
2
6
3
D.
2
5
3

精英家教网
过点C作CPBG,交DE于点P.
∵BC=CE=1,
∴CP是△BEG的中位线,
∴P为EG的中点.
又∵AD=CE=1,ADCE,
在△ADF和△ECF中,
∠AFD=∠EFC
∠ADC=∠FCE
AD=CE

∴△ADF≌△ECF(AAS),
∴CF=DF,又CPFG,
∴FG是△DCP的中位线,
∴G为DP的中点.
∵CD=CE=1,
∴DE=
2

因此DG=GP=PE=
1
3
DE=
2
3

连接BD,
易知∠BDC=∠EDC=45°,
所以∠BDE=90°.
又∵BD=
2

∴BG=
BD2+DG2
=
2+
2
9
=
2
5
3

故选:D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD的边长为6,以D为圆心,DA为半径在正方形内作弧AC,E是AB边上动点(与点A、B不重精英家教网合),过点E作弧AC的切线,交BC于点F,G为切点,⊙O是△EBF的内切圆,分别切EB、BF、FE于点P、J、H
(1)求证:△ADE∽△PEO;
(2)设AE=x,⊙O的半径为y,求y关于x的解析式,并写出定义域;
(3)当⊙O的半径为1时,求CF的长;
(4)当点E在移动时,图中哪些线段与线段EP始终保持相等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•同安区质检)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)求证:△ADE≌△CDF;
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香洲区一模)如图,已知正方形ABCD的边长为28,动点P从A开始在线段AD上以每秒3个单位长度的速度向点D运动(点P到达点D时终止运动),动直线EF从AD开始以每秒1个单位长度的速度向下平行移动(即EF∥AD),并且分别与DC、AC交于E、F两点,连接FP,设动点P与动直线EF同时出发,运动时间为t 秒.
(1)t为何值时,梯形DPFE的面积最大?最大面积是多少?
(2)当梯形DPFE的面积等于△APF的面积时,求线段PF的长.
(3)△DPF能否为一个等腰三角形?若能,试求出所有的t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为8cm,点E、F分别在边BC、CD上,∠EAF=45°.当EF=8cm时,△AEF的面积是
32
32
cm2;当EF=7cm时,△EFC的面积是
8
8
cm2

查看答案和解析>>

同步练习册答案