精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是菱形,∠DCA=30°,求∠DAB、∠ABC的度数.

答案:
解析:

  分析:根据菱形的每一条对角线平分一组对角可知,∠DCA=∠BCA=30°,所以∠BCD=60°.根据菱形的对角相等、对边平行可求得∠BAD和∠ABC的度数.

  解:因为菱形的每一条对角线平分一组对角,

  所以∠DCA=∠BCA=30°,

  即∠BCD=2∠DCA=2×30°=60°.

  因为菱形的对角相等,

  所以∠DAB=∠BCD=60°.

  因为CD∥AB,所以∠BCD+∠ABC=180°.

  所以∠ABC=180°-60°=120°.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案