精英家教网 > 初中数学 > 题目详情

关于x的方程kx2-(k-1)x+1=0有有理根,求整数k的值.

解:(1)当k=0时,x=-1,方程有有理根.

(2)当k≠0时,因为方程有有理根,
所以若k为整数,则△=(k-1)2-4k=k2-6k+1必为完全平方数,
即存在非负整数m,使k2-6k+1=m2
配方得:(k-3+m)(k-3-m)=8,
由k-3+m和k-3-m是奇偶相同的整数,其积为8,
所以它们均是偶数.又k-3+m≥k-3-m.
从而
解得k=6或k=0(舍去),综合(1)(2),
所以方程kx2-(k-1)x+1=0有有理根,整数k的值为0或6.
分析:先要讨论k的取值确定方程,(1)k=0,方程为一元一次方程,显然有有理根;(2)k≠0,方程为一元二次方程,要有理根,则△=(k-1)2-4k=k2-6k+1必为完全平方数,可设k2-6k+1=m2(m非负整数),变形为:(k-3+m)(k-3-m)=8,然后利用m,k都为整数,运用整数的性质,转化为两个二元一次方程组求解即可.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△为完全平方数时,方程有两个有理数根;同时整数的奇偶性和整除的性质以及二元一次方程组的解法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

关于x的方程kx2+(k+1)x+
k
4
=0
有两个不相等的实数根,则k的取值范围是(  )
A、k>-1且k≠0
B、k<
1
2
C、k>-
1
2
且k≠0
D、k<1

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x的方程kx2-8x+5=0有实数根,则k的取值范围是(  )
A、k≤
64
5
B、k≥-
16
5
C、k≥
16
5
D、k≤
16
5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程kx2+2(k+1)x-3=0
(1)若方程有两个有理数根,求整数k的值
(2)若k满足不等式16k+3>0,试讨论方程根的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果关于x的方程kx2-6x+9=0有两个不相等的实数根,那么k的取值范围是
k≤1且k≠0
k≤1且k≠0

查看答案和解析>>

科目:初中数学 来源: 题型:

如果关于x的方程kx2+3x+2=0有两个实数根,则k取值范围为(  )

查看答案和解析>>

同步练习册答案