精英家教网 > 初中数学 > 题目详情

求证:各边相等的圆的内接多边形是正多边形.

答案:略
解析:

已知:多边形是⊙O的内接n边形.

求证:n边形是正n边形

证明:∵

是⊙On等分点.

n边形是正n边形.


提示:

本题只要证明多边形的各个顶点是圆的等分点即可.证明应与圆的性质相联系.


练习册系列答案
相关习题

科目:初中数学 来源:1+1轻巧夺冠·优化训练·九年级数学下(北京课改版)·银版 题型:044

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:

甲同学:这种多边形不一定是正多边形,如圆内接矩形;

乙同学:我发现边数是6时,它也不一定是正多边形.如图一,△ABC是正三角形,AD=BE=CF,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;

丙同学:我能证明,边数是5时,它是正多边形.我想,边数是7时,它可能也是正多边形.

(1)请你说明乙同学构造的六边形各内角相等.

(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证).

(3)根据以上探索过程,提出你的猜想(不必证明).

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:047

求证:各边相等的圆的内接多边形是正多边形.

查看答案和解析>>

科目:初中数学 来源:2006年江苏省扬州市中考数学模拟试卷(一)(解析版) 题型:解答题

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

查看答案和解析>>

科目:初中数学 来源:2004年云南省中考数学试卷(解析版) 题型:解答题

(2004•云南)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

查看答案和解析>>

同步练习册答案