精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,AB=AC,BD、CE分别为两腰上的中线,且BD⊥CE,则tan∠ABC=
 
分析:连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,DE为△ABC的中位线,故BC=4x,四边形BCDE为等腰梯形,根据等腰梯形的性质可知,BF=
1
2
(BC-DE)=x,则FC=3x,又△BCG为等腰直角三角形,故△CEF为等腰直角三角形,则EF=CF=3x,解Rt△BEF可求解.
解答:精英家教网解:如图,连接DE,过E点作EF⊥BC,垂足为F,
设DE=2x,
依题意,得DE为△ABC的中位线,∴BC=4x,
又∵四边形BCDE为等腰梯形,
∴BF=
1
2
(BC-DE)=x,则FC=3x,
∵BD⊥CE,
∴△BCG为等腰直角三角形,
∵EF⊥BC,
∴△CEF为等腰直角三角形,
∴EF=CF=3x,
在Rt△BEF中,EF=3x,BF=x,
∴tan∠ABC=
EF
BF
=
3x
x
=3.
故本题答案为:3.
点评:本题考查了锐角三角函数值的求法,三角形中位线定理,梯形的性质.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法,把问题转化到直角三角形中求三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案