精英家教网 > 初中数学 > 题目详情

抛物线y=x2+(m-3)x-m+2的图象交x轴正半轴于点A,交x轴负半轴于点B,交y轴于点C.
(1)求m的取值范围;
(2)若△ABC恰为等腰三角形,求m.

解:(1)可知x2+(m-3)x-m+2=0的两个根一正一负,
即x1•x2=-m+2<0,
得m>2;

(2)令y=0,得x=1或-m+2,
∴A(1,0),B(-m+2,0),C(0,-m+2),
∵△ABC恰为等腰三角形,
∴当AB=BC时,m-1=(2-m),
解得m=3±(舍去负号);
当AB=AC时,m-1=
解得m=2(舍去);
当AC=BC时,(2-m)=
解得m=3或1(舍去1);
∴m的值为3+;3.
分析:(1)抛物线与x轴正半轴于点A,交x轴负半轴于点B,则-x2+(m-3)x-m+2=0的两个根一正一负;即x1•x2<0.
(2)用含有m的式子表示出点ABC的坐标,在分三种情况讨论即可.
点评:本题考查了用待定系数法求二次函数的解析式、抛物线和x轴的交点问题,以及等腰三角形的性质,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线y=x-3于x轴、y轴分别交于B、C;两点,抛物线y=x2+bx+c同时经过B、C两点,点精英家教网A是抛物线与x轴的另一个交点.
(1)求抛物线的函数表达式;
(2)若点P在线段BC上,且S△PAC=
12
S△PAB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是抛物线y=x2-2(m-1)x+m2-7与x轴的两个交点的横坐标,且x12+x22=10.
求:(1)x1、x2的值;
(2)抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知一元二次方程-x2+bx+c=0的两个实数根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代数式表示);
(2)设抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.若点D的坐标为(0,-2),且AD•BD=10,求抛物线的解析式及点C的坐标;
(3)在(2)中所得的抛物线上是否存在一点P,使得PC=PD?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知抛物线y=x2+bx+c的部分图象如图所示,若方程x2+bx+c=0有两个同号的实数根,则c的值可以是
2
.(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

11、在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是(  )

查看答案和解析>>

同步练习册答案