精英家教网 > 初中数学 > 题目详情
已知直线与直角坐标系的两坐标轴围成的三角形的面积为9,则直线解析式为(     )
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在平面直角坐标系中,四边形OABC是矩形,点A、C的坐标分别为A(3,0)、C(0,4),点D的坐标为D(-5,0),点P是直线AC上的一动点,直线DP与y轴交于点M.问:
(1)当点P运动到何位置时,直线DP平分矩形OABC的面积,请简要说明理由,并求出此时直线DP的函数解析式;
(2)当点P沿直线AC移动时,是否存在使△DOM与△ABC相似的点M,若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、半径长为R(R>0)画圆,所得到的圆称为动圆P.若设动圆P的直径长为AC,过点D作动圆P的两条切线,切点分别为点E、F.请探求是否存在四边形DEPF的最小面积S,若存在,请求出S的值;若不存在,请说明理由.注:第(3)问请用备用图解答.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•萧山区一模)已知在平面直角坐标系中,点O是坐标原点,直线y=kx+b与x轴、y轴分别交于点A、B,与双曲线y=
m
x
相交于点C、D,且点D的坐标为(1,6).
(1)如图1,当点C的横坐标为2时,求点C的坐标和
CD
AB
的值;
(2)如图2,当点A落在x轴负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.
①判断△EFC的面积和△EFD的面积是否相等,并说明理由;
②当
CD
AB
=2
时,求点C的坐标和tan∠OAB的值;
(3)若tan∠OAB=
1
7
,请直接写出
CD
AB
的值(不必书写解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•静安区一模)已知在平面直角坐标系xOy中,二次函数y=-2x2+bx+c的图象经过点A(-3,0)和点B(0,6).
(1)求此二次函数的解析式;
(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;
(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一直线与直角坐标系中两数轴交于点M(0,-3)和点N(a,0)两点,且此直线与两坐标轴围成的三角形面积为12,则a的值为(  )

查看答案和解析>>

同步练习册答案