精英家教网 > 初中数学 > 题目详情
如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y=
k
x
(k<0,x<0)的图象上,点P(m,n)是函数y=
k
x
(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F.
(1)设矩形OEPF的面积为S1,试判断S1是否与点P的位置有关;(不必说明理由)
(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围.
精英家教网
分析:(1)点P是函数y=
k
x
的图象上一点,因此矩形OEPF面积一定是4,所以S1与点P的位置无关;
(2)观察图形,S2为两矩形面积之差,根据坐标意义,可用m代数式表示它们面积,即解.
解答:精英家教网解:(1)S1与点P的位置无关.
∵无论点P在何位置,S1=|k|,
∴S1与点P的位置无关;

(2)∵正方形OABC的面积为4,
∴OC=OA=2.
∴B(-2,2).
把B(-2,2)代入y=
k
x
中,2=
k
-2

∴k=-4.
∴解析式为y=-
4
x

∵P(m,n)在y=-
4
x
的图象上,
n=-
4
m

①当P在B点上方时,
S2=S矩形PEOF-S四边形EOCQ
-
4
m
(-m)-2(-m)
=4+2m(-2<m<0);
②当P在B点下方时,
S2=S矩形PE′OF′-S矩形MAOF′=-m×(-
4
m
)-2×(-
4
m
)

=4+
8
m
(m<-2).
综上所述S2=
4+2m  (-2<m<0)
4+
8
m
     (m<-2)
点评:本题考查了反比例函数与正方形性质的综合应用,综合性较强,同学们要重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为16,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴精英家教网的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(提示:考虑点P在点B的左侧或右侧两种情况)
(1)求B点坐标和k的值;
(2)当S=8时,求点P的坐标;
(3)写出S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形OABC、ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B、E在函数y=
4x
  (x>0)
的图象上.
(1)求正方形OABC的面积;
(2)求E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC和正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则E点的坐标是
5
+1
2
5
-1
2
5
+1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则OD=
2
2
,点E的坐标为
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y=
k
x
(k<0,x<0)的图象上,点P(m,n)是函数y=
k
x
(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、),轴的垂线,垂足分别为E、F.
(1)设矩形OEPF的面积为s1,求s1
(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为s2.写出s2与m的函数关系式,并标明m的取值范围.

查看答案和解析>>

同步练习册答案