解:(1)EG= CG,且EG⊥CG
如图⑤
(2)EG= CG,且EG⊥CG
证明:延长 FE交DC延长线于M,连MG
∵∠AEM= 90°,∠EBC=.90°,∠BCM= 90°
∴四边形 BEMC是矩形
∴BE= CM,∠EMC= 90°
又∵BE= EF
∴EF=CM
∵∠EMC= 90°,FG=DG,
∴MG=
FD=FG
∵BC=EM,BC=CD,
∴EM=CD
∵EF=CM,
∴FM=DM,
∴∠F=45°,
又∵FG=DG,∠CMG=
∠EMC=45°
∴∠F=∠GMC,
∴△GFE≌△GMC
∴EG=CG,∠FGE=∠MGC
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
即∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com