精英家教网 > 初中数学 > 题目详情
如图已知中,,那么AC边上的中线长为(    )cm。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图1,从以AB为直径的圆上一点D引一切线,再从AB上一点C引这条切线的垂线,垂足为E.
(1)如果DC⊥AB且DC交圆于点F,请证明:CE•AB=AC•CB+CD2

(2)如果DC与AB不垂直如图2,那(1)中结论是否还成立?请证明你的想法.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为p.
(1)若D、E、F分别是AB、BC、AC边上的中点,则p=
 

(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是
 

小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ABC以AC边为轴翻折一次得△AB1C,再将△AB1C以B1C为轴翻折一次得△A1B1C,如图2所示.则由轴对称的性质可知,DF+FE1+E1D2=p,根据两点之间线段最短,可得p≥DD2.老师听了后说:“你的想法很好,但DD2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知图形A,B,C,D,E,F分别是由3,4,5,6,7,8个“单位正方形”(每个小正方形的边长为1)组成的图形,它们之中的五个可以拼成一个大正方形.

(1)填空:能拼成的大正方形的面积等于
25
25
,多余的那一个图形的编号是
F
F
(从 A,
B,C,D,E,F中选择一个);
(2)请在下图中画出拼接正方形的方法,要求:标注所使用五个图形的编号,并用实粗线画出边界线.(说明:所使用的五个图形可以旋转,也可以翻转)

查看答案和解析>>

科目:初中数学 来源: 题型:

平面是这样,那曲面呢?我们再看一题(如图1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB.

从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考.而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径.这短短的八个字还真是奥妙无穷啊!
探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)

探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小.(如图所示)

查看答案和解析>>

科目:初中数学 来源:2011届河南省周口市初三下学期第二十八章二次函数图像与性质检测题 题型:解答题

如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为.

(1)若D、E、F分别是AB、BC、AC边上的中点,则=_______;
(2)若D、E、F分别是AB、BC、AC边上任意点,则的取值范围是            .
小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将以AC边为轴翻折一次得,再将为轴翻折一次得,如图2所示. 则由轴对称的性质可知,,根据两点之间线段最短,可得. 老师听了后说:“你的想法很好,但的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.

查看答案和解析>>

同步练习册答案