精英家教网 > 初中数学 > 题目详情
如果点(12)(m3)都在函数y=kx的图象上,那么m=________

 

答案:
解析:

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•岳池县模拟)如图,在平面直角坐标系xoy中,已知抛物线顶点N的坐标为(-1.-
92
),此抛物线交y轴于B(0,-4),交x轴于A、C两点且A点在C点左边.
(1)求抛物线解析式及A、C两点的坐标.
(2)如果点M为第三象限内抛物线上一个动点且它的横坐标为m,设△AMB的面积为S,求S关于m的函数关系式并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置使得以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇安区一模)如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.

(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法).
(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数.
(3)如图2,矩形ABCD中,AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.
①当t=4时,求PH的长.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

让我们一起来探索平面直角坐标系中平行四边形的顶点的坐标之间的关系.
第一步:数轴上两点连线的中点表示的数.自己画一个数轴,如果点A、B分别表示-2、4,则线段AB的中点M表示的数是
1
1
. 再试几个,我们发现:数轴上连接两点的线段的中点所表示的数是这两点所表示数的平均数.
第二步;平面直角坐标系中两点连线的中点的坐标(如图①)为便于探索,我们在第一象限内取两点A(x1,y1),B(x2,y2),取线段AB的中点M,分别作A、B到x轴的垂线段AE、BF,取EF的中点N,则MN是梯形AEFB的中位线,故MN⊥x轴,利用第一步的结论及梯形中位线的性质,我们可以得到点M的坐标是(
x1+x2
2
x1+x2
2
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形时也可以.我们的结论是:平面直角坐标系中连接两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数.
第三步:平面直角坐标系中平行四边形的顶点坐标之间的关系(如图②)在平面直角坐标系中画一个平行四边形ABCD,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),则其对角线交点Q的坐标可以表示为Q(
x1+x3
2
x1+x3
2
y1+y3
2
y1+y3
2
),也可以表示为Q(
x2+x4
2
x2+x4
2
y2+y4
2
y2+y4
2
 ),经过比较,我们可以分别得出关于x1,x2,x3,x4及,y1,y2,y3,y4的两个等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我们的结论是:平面直角坐标系中平行四边形的对角顶点的横(纵)坐标的
和相等
和相等

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上.
(1)以O为位似中心,将△OAB放大,使得放大后△OA1B1与△OAB的对应线段的比为2:1,画出△OA1B1(所画△OA1B1与△OAB在原点两侧).
(2)如果点A(-2,0),那么请直接写出点B、A1及B1的坐标.

查看答案和解析>>

同步练习册答案