精英家教网 > 初中数学 > 题目详情

如图,点A(-2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.
(1)求抛物线的解析式;
(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;
(3)若△FDC是等腰三角形,求点F的坐标.

解:(1)由抛物线与X轴的两个交点A、B的坐标,
可以由两根式设抛物线解析式为:y=a(x+2)(x-4),
然后将C点坐标代入得:a(3+2)(3-4)=3,
解得:a=-
故抛物线解析式是:y=-(x+2)(x-4);

(2)由C、B两点坐标利用待定系数法可以求得CB直线方程为:y=-3x+12,
∵CD⊥CB,
∴CD直线方程可以设为:
y=x+m,
将C点坐标代入得:m=2,
∴CD直线方程为:y=x+2,
∴D点坐标为:D(0,2),
由抛物线解析式可以顶点公式或对称轴x=1解得顶点M坐标为M(1,),
∴由C、M两点坐标可以求得CM即CF直线方程为:y=-x+
∴F点坐标为:F(0,),
∴CE直线方程可以设为:y=x+n,
将C点坐标代入得:n=
∴CE直线方程为:y=x+
令y=0,解得:x=-
∴E点坐标为E(-,0),
∴能;
(3)由C、D两点坐标可以求得CD=
则△FDC是等腰△可以有三种情形:
①FD=CD=
则F点坐标为F(0,2+),
②FC=CD=,过C点作y轴垂线,垂足为H点,
则DH=1,
则FH=1,
则F点坐标为F(0,4),
③FD=FC,作DC的中垂线FG,交y轴于F点,交DC于G点,
由中点公式得G点坐标为G(),
由DC两点可以求得DC直线方程为:y=x+2,
则FG直线方程可以设为:y=-3x+p,
将G点坐标代入解得:p=7,
故F点坐标为(0,7).
分析:(1)由抛物线与X轴的两个交点A、B的坐标,可以由两根式设抛物线解析式为:y=a(x+2)(x-4),求出a的值即可;
(2)由C、B两点坐标利用待定系数法可以求得CB直线方程为:y=-3x+12,设CD直线方程可以设为:y=x+m,求出m的值,进而求出D点的值,由抛物线解析式可以顶点公式或对称轴x=1解得顶点M坐标,由C、M两点坐标可以求得CM即CF直线方程,CE直线方程可以设为:y=x+n,求出n的值,进而求出E点的坐标;
(3)由C、D两点坐标可以求得CD=,△FDC是等腰△可以有三种情形:①当FD=CD;②FC=CD;③FD=FC,分别求出F点的坐标即可;
点评:本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的性质及其解析式的求法,特别是(3)问需要分类讨论,此题难度较大,希望同学们仔细作答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A、B在数轴上,它们所对应的数分别是-4、
2x+23x-1
,且点A、B关于原点O对称,求x的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A为⊙O直径CB延长线上一点,过点A作⊙O的切线AD,切点为D,过点D作DE⊥AC,垂足为F,连接精英家教网BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,试求CE的长.
(3)在(2)的条件下,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A的坐标为(2
2
,0
),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(  )
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B在线段MN上,则图中共有
 
条线段.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点O到直线l的距离为3,如果以点O为圆心的圆上只有两点到直线l的距离为1,则该圆的半径r的取值范围是
2<r<4

查看答案和解析>>

同步练习册答案