精英家教网 > 初中数学 > 题目详情

点A(3,-4)到y轴的距离为_______,到x轴的距离为_____,到原点距离为_____.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、边长为1cm的8个小正方形拼成如图所示的长4cm、宽2cm的长方形.将外围的格点从1号编到12号.最初,点A、B、C分别位于4、8、12号格点上,现以逆时针方向同时移动A、B、C三点,每次各移动到下一个格点,绕了一周回到原先的位置,这过程中,△ABC有
6
次成为直角三角形;△ABC的面积最大是
4
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

8、下列直线中一定是圆的切线的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
作法如下:如(1)图,从B出发向河岸引垂线,垂足为D,在AP的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如(2)图,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为
 

精英家教网
(2)实践运用
如(3)图,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
精英家教网
(3)拓展迁移
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

老师布置了一道思考题:如图,点M,N分别在等边△ABC的BC,CA边上,且BM=CN,AM,BN交于点Q,求证:∠BQM=60°.
(1)请你完成这道思考题的证明.
(2)做完(1)后,同学们进行了反思,提出了许多问题,如:若将题中的点M,N分别移到BC,CA的延长线,直线AM,BN交于点Q,是否仍能得到∠BQM=60°?请你作出判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等边三角形ABC和点P,设点P到△ABC的三边AB,AC,BC的距离为h1,h2,h3,△ABC的高AM为h.
①当点P在△ABC的一边BC上.如图(1)所示,此时h3=0,可得结论h1+h2+h3
=
=
h.(填“>”或“=”或“<”)
②当点P在△ABC内部时,如图(2)所示;当P在△ABC外部时,如图(3)所示,这两种情况上述结论是否成立?若成立,给予证明;若不成立,写出新的关系式(不要求证明).

查看答案和解析>>

同步练习册答案