精英家教网 > 初中数学 > 题目详情

求(2+1)(22+1)(24+1)(28+1)+1的个位数字

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

求不等式组
x-2
2
≥x-2
3-(x-1)>1-2x
的解集,并判断x=-
7
是否是此不等式组的解.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-
b
a
,x1x2=
c
a

这是一元二次方程根与系数的关系,我们利用它可以用来解题:
设x1,x2是方程x2+6x-3=0的两根,求x
 
2
1
+x
 
2
2
的值.
解法可以这样:∵x1+x2=-6,x1x2=-3,则x
 
2
1
+x
 
2
2
=(x1+x22-2x1x2=(-6)2-2×(-3)=42.
请你根据以上解法解答下题:
已知x1,x2是方程x2-4x+2=0的两根,求:
(1)
1
x1
+
1
x2
的值;
(2)(x1-x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玄武区一模)3月的南京,“春如四季”.如图所示为3月22日至27日间,我市每日最高气温与最低气温的变化情况.
(1)最低气温的中位数是
6.5
6.5
℃;3月24日的温差是
14
14
℃;
(2)分别求出3月22日至27日间的最高气温与最低气温的平均数;
(3)数据更稳定的是最高气温还是最低气温?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列各式:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1

由上面的规律:
(1)求25+24+23+22+2+1的值;
(2)求22011+22010+22009+22008+…+2+1的个位数字.
(3)你能用其它方法求出
1
2
+
1
22
+
1
23
+…+
1
22010
+
1
22011
的值吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

求值:
664
=
2
2

查看答案和解析>>

同步练习册答案