精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为________.


分析:先根据直角三角形的性质求出BC、AB的长,再根据图形旋转的性质得出AC=A′C,BC=B′C,再由A′B=A′C即可得出∠A′CB=30°,故可得出∠BCB′=60°,进而判断出△BCB′是等边三角形,故可得出结论.
解答:解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,
∴A′C=AC=1,AB=2,BC=
∵∠A=60°,
∴△AA′C是等边三角形,
∴AA′=AB=1,
∴A′C=A′B,
∴∠A′CB=∠A′BC=30°,
∵△A′B′C是△ABC旋转而成,
∴∠A′CB′=90°,BC=B′C,
∴∠B′CB=90°-30°=60°,
∴△BCB′是等边三角形,
∴BB′=BC=
故答案为:
点评:本题考查的是图形旋转的性质及等边三角形的判定定理,熟知旋转前后的图形全等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案