精英家教网 > 初中数学 > 题目详情

已知P为第一象限内一点,OP与x轴正半轴的夹角为a,且tana=数学公式,OP=5,则点P的坐标为________;若将OP绕原点逆时针旋转90°角到OQ位置,则点Q的坐标为________.

(4,3)    (-3,4)
分析:画出草图.作PM⊥x轴于M,QN⊥y轴于N.
在△OPM中根据三角函数可求PM、OM的长,确定P点坐标;
根据旋转性质,ON=OM,QN=PM.
根据Q在第二象限确定其坐标.
解答:解:如图,作PM⊥x轴于M,QN⊥y轴于N.
在△OPM中,
tana=,OP=5,
∴PM=3,OM=4.
∴P(4,3);
根据旋转的性质,
ON=OM=4,QN=PM=3.
又Q在第二象限,
∴Q(-3,4).
点评:画出草图分析,注意旋转前后对应线段相等,根据点所在象限确定点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8).
(1)直接写出点C的坐标为:C(
 
 
);
(2)已知直线AC与双曲线y=
mx
(m≠0)
在第一象限内有一交点Q为(5,n);
①求m及n的值;
②若动点P从A点出发,沿折线AO→OC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与点P的运动时间t(秒)的函数关系式,并求当t取何值时S=10.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是
 

精英家教网
(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=
1
2
ah
,即三角形面积等于水平宽与铅垂高乘积的一半.
精英家教网
解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=
9
8
S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:第一象限内的点A在一反比例函数图象上,过点A作AB⊥x轴,垂足为B点,连接AO,已知△AOB的面积为4.①求反比例函数的解析式;②若点A的纵坐标为4,过点A的直线与x轴相交于点P,且△APB与△AOB相似,求所有符合条件的点P的坐标;③在②的条件下,求过P、O、A的抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大港区一模)已知:如图,正比例函数y=ax的图象与反比例函数y=
kx
的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象信息回答问题:在第一象限内,当x取何值时,反比例函数的值大于该正比例函数的值?
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,求过点M、A的一次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知图中的曲线是反比例函数y=
m-5x
(m为常数)图象的一支.
(1)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么?
(2)在这个反比例函数图象的某一支上任取点M(a1,b1)和点N(a2,b2),若a1<a2,则b1与b2有怎样的关系?
(3)若该函数的图象与正比例函数y=2x的图象在第一象限内的交点为A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求点A的坐标及反比例函数的关系式.

查看答案和解析>>

同步练习册答案