科目:初中数学 来源:2009年广东省茂名市高中阶段学校招生考试数学试题 题型:059
已知:如图,直线l:
,经过点
,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…,An+1(xn+1,0)(n为正整数),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示)
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.
探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2013-2014学年广东省九年级上学期期末考试数学试卷(解析版) 题型:解答题
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),
则有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方 式的方法.
请仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=_ ,b=_ ;
(2)利用所探索的结论,找一组正整数a、b、m、n,
填空:_ +_ =(_ +_ )2;
(3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年北京门头沟中考二模数学试卷(解析版) 题型:解答题
已知抛物线y=ax2+x+2.
1.当a=-1时,求此抛物线的顶点坐标和对称轴
2.若代数式-x2+x+2的值为正整数,求x的值;
3.若a是负数时,当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0). 若点M在点N的左边,试比较a1与a2的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com