精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB,tan ∠BAO=,点B的坐标为(7,4)。
(1)求点A、C的坐标;
(2)求经过点O、B、C的抛物线的解析式;
(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由。
解:(1)过点G作CE⊥x轴于E,过点B作BD⊥x轴于D,如图,
∵点B的坐标为(7,4),
∴BD=4,OD=7,

∴AD=3,
∴AO=10,A(10,0),
又∵梯形OABC是等腰梯形,OE=AD=3,
∴C(3,4);
(2)设过点O、B、C的抛物线的解析式为y=ax2+bx+c(a≠0),
由O(0,0)、B(7,4)、C(3,4),
得:
解得:
∴抛物线的解析式为
(3)∵EO=AD=3,OA=10,
∴BC=DE=4,
∴梯形的面积为
过点C与等腰梯形一腰平行的直线把梯形分成面积为16的平行四边形和面积为12的三角形,因此与梯形一腰平行且把梯形分成面积相等的两部分的直线一定与边BC交于异于点C 的一点,
①若过点P的直线平行于OC,过点P作PM∥OC,分别与OA、BC相交于M、N,则平行四边形OMNC的面积等于梯形面积的一半,S=OM·CE=14,


∵点P在抛物线上,
设点(x>0)则
∠PMA=∠COA,

解得:(舍去),x2
∴点P的横坐标为
②若过点P的直线平行于AB,
的对称轴为x=5,由对称性可得点P的横坐标为
综上所述,在抛物线上存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分,点P的横坐标为
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案