精英家教网 > 初中数学 > 题目详情

图1、2、3均为4×4的正方形网格,每个小正方形的边长均为1.请分别在这三个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.

解:

分析:根据轴对称图形的定义:沿着一直线折叠后重合.中心对称的性质:绕某一点旋转180°以后重合进行拼图即可.
点评:此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图1,△ABD和△AEC均为等边三角形,连接BE、CD.

(1)请判断:线段BE与CD的大小关系是
BE=CD

(2)观察图2,当△ABD和△AEC分别绕点A旋转时,BE、CD之间的大小关系是否会改变?

(3)观察图3和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是
AE=CG
,在图4中证明你的猜想;


(4)这些结论可否推广到任意正多边形(不必证明),如图5,BB1与EE1的关系是
BB1=EE1
;它们分别在哪两个全等三角形中
△AE1E和△AB1B中
;请在图6中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

24、(1)如图1,△ABC和△ADE均为顶角为α的等腰三角形,连接BD、CE,BD与CE、AC分别交于点O、点P.通过观察或测量,猜想:
①线段BD和CE的数量关系为
相等

②BD和CE之间的夹角∠BOC=
α

(2)现将图1中的△ADE绕着点A顺时针旋转一个角度,得到图2,BD的延长线与CE的延长线交于点O,与AC交于点P,问(1)中猜想的结论还成立吗?若成立,予以证明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,对于△ABC、△ADC均为边长为6的等边三角形,
(1)四边形是什么四边形?请说明理由;
(2)建立适当的直角坐标系,写出各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,三个边长均为2cm的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,假分数可以化为带分数.例如:
8
3
=2+
2
3
=2
2
3
.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:
x-1
x+1
x2
x-1
这样的分式就是假分式;
3
x+1
2x
x2+1
这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式和的形式).
例如:
x-1
x+1
=
(x+1)-2
x+1
=1-
2
x+1
; 
x2
x-1
=
x2-1+1
x-1
=
(x+1)(x-1)+1
x-1
=x+1
+
1
x-1

(1)将分式
x-1
x+2
化为带分式;
(2)若分式
2x-1
x+1
的值为整数,求x的整数值;
(3)求函数y=
2x2-1
x+1
图象上所有横纵坐标均为整数的点的坐标.

查看答案和解析>>

同步练习册答案