精英家教网 > 初中数学 > 题目详情
函数y =自变量x的取值范围是(    )
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠AC C′=α(30°<α<90°(图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠BAC=90°,AB=AC=2
2
,⊙A的半径为1,如图所示.若点O在BC边上运动(与精英家教网点B、C不重合),设BO=x,△AOC的面积为y.
(1)求⊙A与△ABC重叠部分图形的面积(结果用π的式子表示);
(2)求y关于x的函数解析式,并写出函数自变量x的取值范围;
(3)以点O为圆心,BO长为半径作圆,求当⊙O与⊙A外切时,△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

函数y=5-
2-x
自变量x的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

函数y=(x-5)0+
x-3
自变量x的取值范围是
x≥3且x≠5
x≥3且x≠5

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是两个正方形纸片ABCD和CEFG叠放在一起,分别以BC边所在直线和BC边的中垂线为坐标轴建立如图所示的坐标系,其中B(-2,0),E(2,
2
),C(2,0),固定正方形ABCD,直线L经过AC两点;将正方形CEFG绕点C顺时针旋转135°得到正方形CE1F1G1
(1)在图2中求点E1的坐标,并直接写出点E1与直线L的位置关系.
(2)利用(1)的结论,将图2中的正方形CE1F1G1在射线CA上沿着CA方向以每秒1个单位的速度平移,平移后的正方形CE1F1G1设为正方形PQRH(图3),当点R移动到点A停止,设正方形PQRH移动的时间为t秒,正方形PQRH与正方形ABCD重叠部分的面积为S,请直接写出S与t之间的函数解析式,并写出函数自变量t的取值范围.
(3)在(2)的条件下,如果S=1时,过BP的直线为m,M点为直线m上的动点,N为直线L上的动点,那么是否存在平行四边形MNBC,如果存在,请求出M点的坐标,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案