精英家教网 > 初中数学 > 题目详情
边长为a ,b 的长方形的面积是(    )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为
 

②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为
 
时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为
 
时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

九年级上册的教材第118页有这样一道习题:
“在一块三角形余料ABC中,它的边BC=120mm,高线AD=80mm.要把它加工成正方形零件(如图),使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长为多少mm?”
(1)请你解答上题;
(2)若将上题图中的正方形PQMN改为矩形,其余条件不变,求矩形PQMN的面积S的最大值;
(3)我们把上面习题中的正方形PQMN叫做“BC边上的△ABC的内接正方形”,若在习题的条件下,又知AB=150mm,AC=100mm,请分别写出AB边上的△ABC的内接正方形的边长和AC边上的△ABC的内接正方形的边长(不必写出过程,只要直接写出答案即可,结果精确到1mm);
(4)结合第(1)、(3)题,若三角形的三边长分别为a,b,c,各边上的高分别为ha,hb,hc,要使a边上的三角形内接正方形的面积最大,请写出a与ha必须满足的条件(不必写出过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图,在直角坐标系中,y轴是边长为2的等边△BAD的对称轴,x轴是等腰△BDC的对称轴.
(1)试求出经过点A、点B,且对称轴为直线x=1的抛物线的解析式;
(2)把△BDC沿着直线BD翻折后,得到△BDC'.
①问点C'是否在(1)中的抛物线上?
②设BC'交直线x=1于点Q.若点P是(1)中的抛物线上的一个动点,过点P作PT⊥直线x=1,垂足为T,问:在抛物线上是否存在着点P,使得以P、T、Q为顶点的三角形与△QDC'相似?若存在,写出所有符合上述条件的点P的横坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为________;
②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为________时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为________时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在平面直角坐标系中,为坐标原点,边长为的正三角形边在轴的正半轴上.点同时从点出发,点以1单位长/秒的速度向点运动,点为2个单位长/秒的速度沿折线运动.设运动时间为秒,

(1)当时,证明

(2)若的面积为,求的函数关系式;

(3)以点为中心,将所在的直线顺时针旋转60°交边于点,若以为顶点的四边形是梯形,求点的坐标.

 


查看答案和解析>>

同步练习册答案