精英家教网 > 初中数学 > 题目详情

菱形的一条边与两条对角线所成的两个角的度数比为1:2,则该菱形中较大的角等于________度.

120
分析:根据题意可求得菱形的一边与两条对角线所构成的两个角的度数,再根据菱形的对角线的性质即可求得较大的角的度数.
解答:由题意可得,菱形的一条边与两条对角线所成的两个角的度数为30°、60°,又因为菱形的每一条对角线平分一组对角,所以,该菱形中较大的角等于120°.故答案为120.
点评:主要考查菱形对角线的性质:菱形的对角线互相垂直平分,且每一条对角线平分一组对角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、下列说法中正确的个数有(  )
①对角线互相平分且相等的四边形是菱形;
②有一组对边平行的四边形是梯形;
③如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半;
④如果一个四边形绕对角线的交点旋转90°后,所得图形与原来的图形重合,那么这个四边形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

某中学有一块长为a米,宽为b米的矩形场地,计划在该场地上修筑宽都为2米的两条互相垂直的道路,余下的四块矩形小场地建成草坪.
(1)如图,请分别写出每条道路的面积(用含a或含b的代数式表示);
(2)已知a:b=2:1,并且四块草坪的面积之和为312米2,试求原来矩形场地的长与宽各为多少米?
(3)在(2)的条件下,为进一步美化校园,根据实际情况,学校决定对整个矩形场地作如下设计(要求同时符合下述两个条件):
条件①:在每块草坪上各修建一个面积尽可能大的菱形花圃(花圃各边必须分别与所在草坪的对角线平行),并且其中有两个花圃的面积之差为13米2
条件②:整个矩形场地(包括道路、草坪、花圃)为轴对称图形.
请你画出符合上述设计方案的一种草图(不必说明画法与根据),并求出每个菱形花圃的面积.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•鼓楼区一模)问题提出:
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
初步思考:
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件.满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
深入探究:
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1

求证:
四边形ABCD≌四边形A1B1C1D1
四边形ABCD≌四边形A1B1C1D1

证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形ABCD和四边形A1B1C1D1为例,分为以下几类:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
其中能判定四边形ABCD和四边形A1B1C1D1全等的是
①②③
①②③
(填序号),概括可得“全等四边形的判定方法”,这个判定方法是
有一组邻边和三个角对应相等的两个四边形全等
有一组邻边和三个角对应相等的两个四边形全等

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,矩形铁片ABCD中,AD=8,AB=4; 为了要让铁片能穿过直径为3.8的圆孔,需对铁片进行处理 (规定铁片与圆孔有接触时铁片不能穿过圆孔).
(1)直接写出矩形铁片ABCD的面积
32
32

(2)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,将矩形铁片的四个角去掉.
①证明四边形MNPQ是菱形;
②请你通过计算说明四边形铁片MNPQ能穿过圆孔.
(3)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片.当BE=DF=1时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列命题中,正确的个数是(  )
①若三条线段的比为1:1:
2
,则它们组成一个等腰直角三角形;
②两条对角线相等的平行四边形是矩形;
③对角线互相垂直的四边形是菱形;
④有两个角相等的梯形是等腰梯形;
⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形.

查看答案和解析>>

同步练习册答案