精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.
(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;
(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;
(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.
解:(1)在直线y=x+m中,令y=0,得x=﹣m.
∴点A(﹣m,0).
在直线y=﹣3x+n中,令y=0,得
∴点B(,0).


∴点P().
在直线y=x+m中,令x=0,得y=m,
∴|﹣m|=|m|,即有AO=QO.
又∠AOQ=90°,
∴△AOQ是等腰直角三角形,
∴∠PAB=45度.
(2)∵CQ:AO=1:2,
∴(n﹣m):m=1:2,
整理得3m=2n,
∴ n=m,
==m,
而S四边形PQOB=S△PAB﹣S△AOQ=+m)×(m)﹣×m×m=m2=
解得m=4,
∴n=m=6,
∴P().
∴PA的函数表达式为y=x+4,
PB的函数表达式为y=﹣3x+6.
(3)存在.
过点P作直线PM平行于x轴,过点B作AP的平行线交PM于点D1,过点A作BP的平行线交PM于点D2,过点A、B分别作BP、AP的平行线交于点D3
①∵PD1∥AB且BD1∥AP,
∴PABD1是平行四边形.此时PD1=AB,易得
②∵PD2∥AB且AD2∥BP,
∴PBAD2是平行四边形.此时PD2=AB,易得
③∵BD3∥AP且AD3∥BP,此时BPAD3是平行四边形.
∵BD3∥AP且B(2,O),
∴yBD3=x﹣2.同理可得yBD3=﹣3x﹣12


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案