精英家教网 > 初中数学 > 题目详情

已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.
作业宝
(1)如图①,若∠BAC=23°,求∠AMB的大小;
(Ⅱ)如图②,过点B作BD∥MA,交AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.

解:(1)连接OB,
∵MA、MB分别切⊙O于A、B,
∴∠OBM=∠OAM=90°,
∵弧BC对的圆周角是∠BAC,圆心角是∠BOC,∠BAC=23°,
∴∠BOC=2∠BAC=46°,
∴∠BOA=180°-46°=134°,
∴∠AMB=360°-90°-90°-134°=46°.

(2)连接AD,AB,
∵BD∥AM,DB=AM,
∴四边形BMAD是平行四边形,
∴BM=AD,
∵MA切⊙O于A,
∴AC⊥AM,
∵BD∥AM,
∴BD⊥AC,
∵AC过O,
∴BE=DE,
∴AB=AD=BM,
∵MA、MB分别切⊙O于A、B,
∴MA=MB,
∴BM=MA=AB,
∴△BMA是等边三角形,
∴∠AMB=60°.
分析:(1)根据切线性质求出∠OBM=∠OAM=90°,根据圆周角定理求出∠COB,求出∠BOA,即可求出答案;
(2)连接AB、AD,得出平行四边形,推出MB=AD,推出AB=AD,求出等边三角形AMB,即可得出答案.
点评:本题考查了等边三角形性质和判定,切线性质,线段垂直平分线性质,垂径定理,平行四边形的性质和判定的应用,主要考查学生综合运行性质进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.
运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;
运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为
2
cm/s
,当QC⊥DF时暂停旋转;
运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.
设运动时间为t(s),中间的暂停不计时,
解答下列问题
(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时
 
s;
(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•邯郸一模)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落为点B,有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=20米,AC=17.5米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).
(1)在如图建立的坐标系下,求网球飞行路线的解析式.
(2)飞行中的网球距发射器水平距离是17.5米时,网球飞行的高度是
35
16
35
16
米,若水平距离是18米时,网球飞行的高度是
9
5
9
5
米.
(3)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?当竖直摆放多少个桶时,网球可以落入桶内?
(4)如果在C处竖直摆放一个桶,并保证发射的网球可以落入桶内,发射器应向左平移多少?请直接写出平移的范围(
94
≈9.7,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分别是AB、AC上的两点,且GF∥BC,AF=2,BG=4.
(1)求梯形BCFG的面积;
(2)有一梯形DEFG与梯形BCFG重合,固定△ABC,将梯形DEFG向右运动,直到点D与点C重合为止,如图②.
①若某时段运动后形成的四边形BDG'G中,DG⊥BG',求运动路程BD的长,并求此时G'B2的值;
②设运动中BD的长度为x,试用含x的代数式表示出梯形DEFG与Rt△ABC重合部分的面积S.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

探索函数y=x+
1
x
(x>0)
的图象和性质.
已知函数y=x(x>0)和y=
1
x
(x>0)
的图象如图所示,若P为函数y=x+
1
x
(x>0)
图象上的点,过P作PC垂直于x轴且与直线、双曲线、x轴分别交于点A、B、C,则PC=x+
1
x
=AC+BC,从而“点P可以看作点A的沿竖直方向向上平移BC个长度单位(PA=BC)而得到”.
(1)根据以上结论,请在下图中作出函数y=x+
1
x
(x>0)图象上的一些点,并画出该函数的图象.
(2)观察图象,写出函数y=x+
1
x
(x>0)两条不同类型的性质.

查看答案和解析>>

同步练习册答案