精英家教网 > 初中数学 > 题目详情

已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.
求证:AF∥EC.

证明:∵AF平分∠BAD,CE平分∠BCD,
∴∠DAF=∠BAD,∠ECF=∠BCD,
∵∠BAD=∠BCD,
∴∠DAF=∠ECF,
∵AD∥BC,
∴∠DAF+∠AFC=180°,
∴∠ECF+∠AFC=180°,
∴AF∥EC.
分析:由AF与CE分别为角平分线,得到∠DAF=∠BAD,∠ECF=∠BCD,再由已知的角相等等量代换得到∠DAF=∠ECF,由AD与BC平行,利用两直线平行同旁内角互补得到一对角互补,等量代换得到∠AFC与∠ECF互补,利用同旁内角互补两直线平行即可得证.
点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知:如图,AD∥BC,ED∥BF,且AF=CE.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD=BC,AC=BD.试判断OD、OC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

同步练习册答案