精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,弦AB⊥AC,AB=a,AC=b,弦AD平分∠BAC.求AD的长(用a、b表示).

解:连接BC,BD,CD,设BC交AD于E,
∵AB⊥AC,
∴BC经过O点.
∵AD平分∠BAC,
∴∠BAD=∠BCD=∠CAD=∠CBD=45°.
∴BC=,CD=BD=
∵∠BAE=∠DAC,∠ABE=∠ADC,
∴△ABE∽△ADC.

同理,△CDE∽△ADC.

∴BE•AD=AB•CD,CE•AD=AC•CD.
∴(BE+CE)•AD=(AB+AC)•CD.
∴AD=(a+b).
分析:连接BC,BD,CD,设BC交AD于E,根据已知及相似三角形的判定得到△ABE∽△ADC,△CDE∽△ADC,根据相似比即可求得AD的长.
点评:本题综合考查了圆周角定理及相似三角形的判定和应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,在⊙O中,弦BC∥半径OA,AC与OB相交于M,∠C=20°,则∠AMB的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙M中,弦AB所对的圆心角为120度,已知圆的半径为2cm,并建立如图所示的直角坐精英家教网标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)设点P是⊙M上的一个动点,当△PAB为Rt△PAB时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB=BC=CD,且∠ABC=140°,则∠AED=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC∽△PDB;
(2)当
AC
DB
为何值时,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步练习册答案