精英家教网 > 初中数学 > 题目详情

如图所示:B、C、D三点在一条直线上,△ABC和△ECD是等边三角形.求证:BE=AD.

证明:∵△ABC和△ECD是等边三角形,
∴∠ACB=∠ECD=60°,BC=AC,EC=CD.
∴∠ACB+∠ACE=∠ECD+∠ACE,
即∠BCE=∠ACD.
在△BCE和△ACD中,

∴△BCE≌△ACD(SAS).
∴BE=AD.(全等三角形的对应边相等)
分析:证简单的线段相等,可通过证线段所在的三角形全等来得出结论.观察所求和已知条件,可证△ACD≌△BCE;这两个三角形中,已知的条件有:BC=AC,EC=CD,而∠ACD和∠BCE同为60°角的补角,由此可根据SAS证得两三角形全等,即可得证.
点评:本题考查了全等三角形的判定与性质及等边三角形的性质;此题考查简单的线段相等,可以通过全等三角形来证明.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,向平静的水面投入一枚石子,在水面会激起一圈圈圆形涟漪,当半径从2cm变成5cm时,圆形的面积从
cm2变成
25π
cm2.这一变化过程中
半径
是自变量,
面积
是函数.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网二次函数y=mx2+(6-2m)x+m-3的图象如图所示,则m的取值范围是(  )
A、m>3B、m<3C、0≤m≤3D、0<m<3

查看答案和解析>>

同步练习册答案