分析 (1)把由②变形为3(3x-2y)+2y=19,将①整体代入;
(2)组中的方程①可变形成x2+4y2=$\frac{47+2xy}{3}$,组中的方程②可变形成x2+4y2=$\frac{36-xy}{2}$,利用整体代换可求出xy,然后再代入求出整式x2+4y2+xy的值.
解答 解:(1)$\left\{\begin{array}{l}{3x-2y=5①}\\{9x-4y=19②}\end{array}\right.$
由②变形为9x-6y+2y=19,
即3(3x-2y)+2y=19,③
把方程①代入③得3×5+2y=19,
∴y=2,
把y=2代入①得x=3,
∴方程组的解为$\left\{\begin{array}{l}x=3\\ y=2.\end{array}$
(2)$\left\{\begin{array}{l}{{3x}^{2}-2xy+1{2y}^{2}=47①}\\{{2x}^{2}+xy+{8y}^{2}=36②}\end{array}\right.$,
由①得3(x2+4y2)=47+2xy,
即x2+4y2=$\frac{47+2xy}{3}$,③
把方程③代入②得2×$\frac{47+2xy}{3}$+xy=36,
解得xy=2.
①-②,得x2-3xy+4y2 =11
所以x2+xy+4y2=11+4xy
∴把xy=2代入得x2+4y2+xy=11+8=19.
答:整式x2+4y2+xy的值为19.
点评 本题考查了方程组的新解法“整体代入”法.掌握方法特点,灵活变形代入是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| x | … | -5 | -4 | -3 | -2 | -1 | … |
| y | … | -7.5 | -2.5 | 0.5 | 1.5 | 0.5 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com