精英家教网 > 初中数学 > 题目详情

中,,在中,,要使相似,需添加的一个条件是         (写出一种情况即可).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•长春)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm.D、E分别为边AB、BC的中点,连接DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在线段AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M在线段AQ上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.
(4)连接CD,当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处,直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

利用平行线的性质探究:
如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图<1>,过点P作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:
(1)当动点P落在第②部分时,在图<2>中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;
(2)当动点P落在第③部分时,在图<3>、图<4>中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.

(1)当动点P落在第②部分时______.
(2)当动点P落在第③部分时(如图<3>)______.
当动点P落在第③部分时(如图<4>)______.

查看答案和解析>>

科目:初中数学 来源: 题型:

在我校举办的课外活动中,有一项是小制作评比.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1. 第三组的件数是12. 请你回答:

(1)本次活动共有__________件作品参赛;各组作品件数的中位数是_________件.

(2)经评比,第四组和第六组分别有10件和2件作品获奖,

那么你认为这两组中哪个组获奖率较高?为什么?

(3)小制作评比结束后,组委会决定从4件最优秀的作品

A、B、C、D中选出两件进行全校展示,请用树状图或列

表法求出刚好展示B、D的概率.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图(2)),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图(3)的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图(3)至图(6)中统一用F表示)

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决。

(1)将图(3)中△ABF沿BD向右平移到图(4)的位置,使点B与点F重合,请你求出平移的距离;

(2)将图(3)中△ABF绕点F顺时针方向旋转30°到图(5)的位置,A1F交DE于点G,请你求出线段FG的长度; 

(3)将图(3)中的△ABF沿直线AF翻折到图(6)的位置,AB1交DE丁点H,请证明:AH=DH。

查看答案和解析>>

同步练习册答案