精英家教网 > 初中数学 > 题目详情
精英家教网已知,△ABC中,∠C=90°,G是三角形的重心,AB=8,
求:①线段GC的长;
②过点G的直线MN∥AB,交AC于M,BC于N,求MN的长.
分析:(1)根据三角形重心的性质和直角三角形斜边上的中线等于斜边的一半求解;
(2)由MN∥AB易得△CMN∽△CAB,同理可证△CMG∽△CAD,即有
MN
AB
=
MC
AC
=
CG
CD
=
2
3
,即可求MN的长.
解答:精英家教网解:(1)连接CG交AB于点D,
∵G是三角形的重心,
∴CD为AB边上的中线,DG=
1
3
CD
,CG=
2
3
CD

又∵∠C=90°
∴CD=
1
2
AB=4,CG=
2
3
CD
=
8
3


(2)∵MN∥AB
∴∠CMN=∠A,∠CNM=∠B
∴△CMN∽△CAB
同理可证△CMG∽△CAD
MN
AB
=
MC
AC
=
CG
CD
=
2
3

MN=
2
3
AB=
16
3
点评:(1)考查了三角形重心和直角三角形的性质;
(2)考查了相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,现将△ABC绕着点C逆时针旋转α(45°<α<135°)得到△DCE,设直线DE与直线AB相交于点P,连接CP.
精英家教网
(1)当CD⊥AB时(如图1),求证:PC平分∠EPA;
(2)当点P在边AB上时(如图2),求证:PE+PB=6;
(3)在△ABC旋转过程中,连接BE,当△BCE的面积为
25
4
3
时,求∠BPE的度数及PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,已知在△ABC中,AD垂直平分BC,AC=EC,点B、D、C、E在同一直线上,则下列结论:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正确的个数有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,有一个角为60°,S△ABC=10
3
,周长为20,则三边长分别为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,点D、E分别是AB、AC上的点,以AE为直径的⊙O与过B点的⊙P精英家教网外切于点D,若AC和BC边的长是关于x的方程x2-(AB+4)x+4AB+8=0的两根,且25BC•sinA=9AB,
(1)求△ABC三边的长;
(2)求证:BC是⊙P的切线;
(3)若⊙O的半径为3,求⊙P的半径.

查看答案和解析>>

同步练习册答案