精英家教网 > 初中数学 > 题目详情
如图,求点P,使P到△ABC的两顶点BC距离相等,且PABAC的距离相等.

 

答案:
解析:

作法:(1)作∠A的平分线AD

(2)BC的垂直平分线m,交AD于点P.点P即为所求.

证明:∵P在线段BC的垂直平分线m上,∴PBC距离相等.又∵PAD上,∴PABAC

的距离相等.∴点P即为所求.

 

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分精英家教网别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,-
2
3
)

(1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同
时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取
5
4
时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=
13

(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=
5
6
x2+bx+c经过点A、B.
(1)求抛物线的表达式.
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC以1cm/s的速度向点C移动,当其中一点到达终点时,另一点也随之停止运动.
①移动开始后,是否存在某一时刻t,使得以O、A、P为顶点的三角形与△BPQ相似,若存在,请求出此时t的值,若不存在,请说明理由.
②移动开始后第t秒时,设S=PQ2(cm2),当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)若此抛物线上有一点D(3,
1
2
),在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

作图题:已知:△ABC如图,求作一点P,使点P到AB,AC两边的距离相等,并且点P到A、B两点的距离也相等(保留作图痕迹)

查看答案和解析>>

同步练习册答案