精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.
(1)求该抛物线的解析式.
(2)若过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,
求此直线的解析式.

解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),

解得
∴抛物线解析式为y=x2-4x+3;

(2)如图,设对称轴与x轴的交点为C,
∵对称轴直线为x=-=-=2,
∴点C的坐标为(2,0),
∵点A(-1,0),
∴AC=2-(-1)=2+1=3,
设直线AB与对称轴的交点为B,
∵直线AB与抛物线的对称轴和x轴围成的三角形面积为6,
×AC•BC=6,
×3•BC=6,
解得BC=4,
∴点B的坐标为(2,4)或(2,-4),
设直线AB的解析式为y=kx+m,

解得
所以,直线AB的解析式为:y=x+或y=-x-
分析:(1)利用待定系数法求抛物线解析式解答即可;
(2)根据抛物线解析式求出对称轴解析式,设对称轴与x轴的交点为C,求出AB的长度,再根据三角形的面积公式求出BC的长度,然后根据点B在x轴上方与下方两种情况得到点B的坐标,再利用待定系数法求直线解析式解答.
点评:本题是对二次函数的综合考查,主要利用了待定系数法求抛物线解析式,待定系数法求直线解析式,以及三角形的面积,都是基本方法,难度不大,仔细分析便不难求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案