精英家教网 > 初中数学 > 题目详情

已知:如图,AB是⊙O的弦,∠OAB=45°,C是优弧AB上一点,BD∥OA,交CA延长线于点D,连接BC.
(1)求证:BD是⊙O的切线;
(2)若AC=数学公式,∠CAB=75°,求⊙O的半径.

(1)证明:连接OB,如图.
∵OA=OB,∠OAB=45°,
∴∠1=∠OAB=45°.
∵AO∥DB,
∴∠2=∠OAB=45°.
∴∠1+∠2=90°.
∴BD⊥OB于B.
∴又点B在⊙O上.
∴BD是⊙O的切线.

(2)解:作OE⊥AC于点E.
∵OE⊥AC,AC=
∴AE==
∵∠BAC=75°,∠OAB=45°,
∴∠3=∠BAC-∠OAB=30°.
∴在Rt△OAE中,
解法二:如图
延长AO与⊙O交于点F,连接FC.
∴∠ACF=90°.
在Rt△ACF中,
∴AO==4.
分析:(1)连接OB,如图.根据题意得,∠1=∠OAB=45°.由AO∥DB,得∠2=∠OAB=45°.则∠1+∠2=90°.即BD⊥OB于B.从而得出CD是⊙O的切线.
(2)作OE⊥AC于点E.由OE⊥AC,AC=,求得AE,由∠BAC=75°,∠OAB=45°,得出∠3.在Rt△OAE中,求得OA即可.
点评:本以考查了切线的判定和性质,以及解直角三角形,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案