精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.

(1)求a,c的值;

(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;

(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)

答案:
解析:

  分析:(1)利用待定系数法把点A、B的坐标代入抛物线表达式解二元一次方程组即可;

  (2)先求出直线AB的解析式,然后分别求出点P与点Q的坐标,则PQ的长度S就等于点Q的纵坐标减去点P的纵坐标,然后整理即可;

  (3)根据直线与圆的位置关系有相离、相切与相交共三种情况,又点P可以在对称轴左边也可以在对称轴右边,进行讨论列式求解即可.

  解答:解:∵抛物线y=ax2-4ax+c过A(0,-1),B(5,0)

  ∴

  解得:

  故ac的值分别为,-1,

  抛物线的解析式是y=x2x-1;

  (2)∵直线AB经过A(0,-1),B(5,0),

  ∴直线AB的解析式为y=x-1,

  由(1)知抛物线的解析式为:y=x2x-1,

  ∵点P的横坐标为m,点P在抛物线上,点Q在直线AB上,PQ⊥x轴,

  ∴P(m,m2m-1),Q(m,m-1),

  ∴S=PQ=(m-1)-(m2m-1),

  即S=-m2+m(0<m<5);

  (3)抛物线的对称轴l为:x=2,

  以PQ为直径的圆与抛物线的对称轴l的位置关系有:

  相离、相切、相交三种关系

  相离时:|m-2|>(-m2+m),

  解得0<m<<m<5;

  相切时:|m-2|=(-m2+m),

  解得m=或m=

  相交时:|m-2|<(-m2+m),

  解得<m<

  点评:本题考查了待定系数法,直线与二次函数相交的问题,直线与圆的位置关系,综合性较强,对同学们的能力要求较高,(3)中要注意分点P有在对称轴左边与右边的两种情况,容易漏解而导致出错.


提示:

二次函数综合题.


练习册系列答案
相关习题

科目:初中数学 来源:2008年江西省南昌市初中毕业升学统一考试、数学试卷 题型:044

如图,抛物线y1=-ax2-ax+1经过点P,且与抛物线y2=ax2-ax-1,相交于A,B两点.

(1)求a值;

(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;

(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于CD两点,试问当x为何值时,线段CD有最大值?其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分8分)如图,抛物线yax-5x+4ax轴相交于点AB,且经过点C(5,4).该抛物线顶点为P.

1.⑴求a的值和该抛物线顶点P的坐标.

2.⑵求DPAB的面积;

3.⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分8分)如图,抛物线yax-5x+4ax轴相交于点AB,且经过点C(5,4).该抛物线顶点为P.

【小题1】⑴求a的值和该抛物线顶点P的坐标.
【小题2】⑵求DPAB的面积;
【小题3】⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题

(本题满分8分)如图,抛物线yax-5x+4ax轴相交于点AB,且经过点C(5,4).该抛物线顶点为P.

【小题1】⑴求a的值和该抛物线顶点P的坐标.
【小题2】⑵求DPAB的面积;
【小题3】⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题

(本题满分8分)如图,抛物线yax-5x+4ax轴相交于点AB,且经过点C(5,4).该抛物线顶点为P.

1.⑴求a的值和该抛物线顶点P的坐标.

2.⑵求DPAB的面积;

3.⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.

 

查看答案和解析>>

同步练习册答案