精英家教网 > 初中数学 > 题目详情

点A和点B(2,3)关于x轴对称,则A、B两点间的距离为


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    10
C
分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数求出点A的坐标,再求解即可.
解答:∵点A和点B(2,3)关于x轴对称,
∴点A的坐标为(-2,3),
∴AB=3-(-3)=3+3=6.
故选C.
点评:本题考查了关于x轴、y轴的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角梯形OABC中,OA∥BC,∠B=90°,OA=6,AB=4,BC=3,以O为原点,以OA所在的直线为x轴建立平面直角坐标系,动点P从原点O出发,沿O?C?B?A的方向以每秒2两个单位长的速度运动,动点Q也从原点出发,在线段OA上以每秒1个单位长的速度向点A运动,点P、Q同时出发,当点Q运动到点A时,点P随之停止运动,设运动的时间为t(秒)精英家教网
(1)求点C的坐标和线段OC的长;
(2)设△OPQ的面积为S,求S与t之间的函数关系式;
(3)当点P在线段CB上运动时,是否存在以C、P、Q三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=-x+7与正比例函数y=
43
x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012年江苏省中考数学模拟试卷(解析版) 题型:解答题

如图,已知一次函数y=-x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省盐城市中考数学试卷(解析版) 题型:解答题

如图,已知一次函数y=-x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江杭州萧山区党湾镇初中八年级12月月考数学试卷(解析版) 题型:解答题

如图,已知一次函数y=-x +7与正比例函数y=x的图象交于点A,且与x轴交于点B.

(1)求点A和点B的坐标;

(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.

①当t为何值时,以A、P、R为顶点的三角形的面积为8?

②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案