精英家教网 > 初中数学 > 题目详情

已知△ABC是等边三角形,∠ADC=120°,AD=3,BD=5,则边CD的长为________.

2
分析:延长AD到点E,使DE=CD,连接CE.通过证明△BCD≌△ACE,可得出BD=AE,从而得出CD的值.
解答:解:延长AD到点E,使DE=CD,连接CE.
∵∠ADC=120°
∴∠CDE=60°
∴△CDE是等边三角形
∴∠DCE=60°,CD=CE
∵∠ACB=60°
∴∠BCD=∠ACE
∵BC=AC
∴△BCD≌△ACE
∴BD=AE
∵BD=5,AD=3
∴DE=2
∴CD=2.
故答案为:2.
点评:本题主要考查了全等三角形的判定与性质及等腰三角形的性质,正确的作出辅助线构造全等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知△ABC是等边三角形,⊙O为它的外接圆,点P是
BC
上任一点.
(1)图中与∠PBC相等的角为
 

(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知D是等边△ABC外一点,∠BDC=120°,则AD、BD、DC三条线段的数量关系为
AD=BD+DC
AD=BD+DC

查看答案和解析>>

科目:初中数学 来源:2013届北京市八年级上学期期中数学试卷(解析版) 题型:填空题

已知D是等边△ABC外一点,∠BDC=120º则AD、BD、DC三条线段的数量关系为_____________.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知△ABC是等边三角形,⊙O为它的外接圆,点P是数学公式上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市花都区中考数学二模试卷(解析版) 题型:解答题

(2009•花都区二模)已知△ABC是等边三角形,⊙O为它的外接圆,点P是上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案