精英家教网 > 初中数学 > 题目详情

设S=数学公式+数学公式+…+数学公式,求不超过S的最大整数[S].

解:∵=
=
=
=|-|,
=1+-
∴S=1+-+1+-+…+1+-=2000-
∴[S]=1999.
∴不超过S的最大整数[S]为1999.
分析:首先将化简,可得=1+-,然后代入原式求得S的值,即可求得[S]的值.
点评:此题考查了取整函数的应用与二次根式的化简.注意求得=1+-是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S△MCN关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•闵行区三模)如图,在△ABC中,AC=BC,AB=8,CD⊥AB,垂足为点D.M为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC=MN.设AM=x.
(1)如果CD=3,AM=CM,求AM 的长;
(2)如果CD=3,点N在边BC上.设CN=y,求y与x的函数解析式,并写出函数的定义域;
(3)如果∠ACB=90°,NE⊥AB,垂足为点E.当点M在边AB上移动时,试判断线段ME的长是否会改变?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴三模)已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.
(1)如图1,若AB=2
3
,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);
(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;
(3)若AB=2
3
,设BP=4,求QF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•萧山区一模)如图,△ABC中,∠ABC=Rt∠,AB=BC,点M是BC边上任意一点,点D是AB的延长线上一点,且BM=BD;又点E、F分别是CD、AM边上的中点,连接FE、EB.
(1)求证:△AMB≌△CDB;
(2)点M在BC边上移动时,试问∠BEF的度数是否会发生变化?若不变,请求出∠BEF的度数;若变化,请说明理由;
(3)若
EF
AC
=
3
5
,且设∠MAB=α,试求cosα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,a,b,c分别是△ABC中∠A,∠B,∠C的对边,P为BC上一点,以AP为直径的圆O交AB于D,PE∥AB交AC于E,b,c是方程x2+kx+9=0的两根,且(b2+c2)(b2+c2-14)-72=0,锐角B的正弦值等于
2
3
2

(1)求k的值;
(2)设BD=x,求四边形ADPE的面积为S关于x的函数关系式;
(3)问圆O是否能与BC相切?若能请求出x的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案