精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,D为BC边上一点,AB=15,BD=9,AD=12,AC=13.
(1)求证:AD⊥BC;
(2)求△ABC的面积.

解:(1)∵122+92=152
∴AD2+BD2=AB2
∴∠ADB=90°,
∴AD⊥CB;

(2)∵AD∠BC,
∴∠ADC=90°,
∴DC==5,
∴△ABC的面积:×CB×AD=×14×12=84.
分析:(1)利用勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可判断出△ABD是直角三角形,进而得到结论;
(2)根据勾股定理计算出CD的长,再利用三角形的面积公式计算出三角形的面积即可.
点评:此题主要考查了勾股定理逆定理,以及勾股定理的应用,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案