| 解:(1)证明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, ∵∠ABC=∠ADC=90°, ∴∠ACB=∠ACD=30°, ∴AB=AD= ∴AB+AD=AC。 |
|
| (2)成立; 证明:如图,过点C分别作AM、AN的垂线,垂足分别为E、F, ∵AC平分∠MAN, ∴CE=CF, ∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°, ∴∠CDE=∠ABC, ∵∠CED=∠CFB=90°, ∴△CED≌△CFB,∴ED=FB, ∴AB+AD=AF+BF+AE-ED=AF+AE, 由(1)知AF+AE=AC, ∴AB+AD=AC。 |
|
| (3)① ② 由(2)知,ED=BF,AE=AF, 在Rt△AFC中, ∴ ∴AB+AD=AF+BF+AE-ED=AF+AE=2AF=AC |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012学年湖北黄陂北片学校八年级上第一次月考数学试卷(带解析) 题型:解答题
已知∠MAN,AC平分∠MAN。![]()
![]()
⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°求证:AB+AD=AC;
⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏东台创新学校九年级上学期第二次阶段测试数学试卷(解析版) 题型:解答题
已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,我们可得结论:AB+AD=AC;
![]()
在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
![]()
【解】
(2)在图3中:(只要填空,不需要证明).
![]()
①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示)。
查看答案和解析>>
科目:初中数学 来源:2011-2012学年湖北黄陂北片学校八年级上第一次月考数学试卷(解析版) 题型:解答题
已知∠MAN,AC平分∠MAN。
![]()
![]()
⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°求证:AB+AD=AC;
⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com