精英家教网 > 初中数学 > 题目详情
已知∠MAN,AC平分∠MAN。
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中,
①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α 的三角函数表示),并给出证明。
解:(1)证明:∵AC平分∠MAN,∠MAN=120°,
∴∠CAB=∠CAD=60°,
∵∠ABC=∠ADC=90°,
∴∠ACB=∠ACD=30°,
∴AB=AD=AC,
∴AB+AD=AC。
(2)成立;
证明:如图,过点C分别作AM、AN的垂线,垂足分别为E、F,
∵AC平分∠MAN,
∴CE=CF,
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,
∵∠CED=∠CFB=90°,
∴△CED≌△CFB,∴ED=FB,
∴AB+AD=AF+BF+AE-ED=AF+AE,
由(1)知AF+AE=AC,
∴AB+AD=AC。
(3)①

由(2)知,ED=BF,AE=AF,
在Rt△AFC中,,即

∴AB+AD=AF+BF+AE-ED=AF+AE=2AF=AC
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=
 
AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=
 
AC(用含α的三角函数表示),并给出证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2011-2012学年湖北黄陂北片学校八年级上第一次月考数学试卷(带解析) 题型:解答题

已知∠MAN,AC平分∠MAN。

⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°求证:AB+AD=AC;
⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏东台创新学校九年级上学期第二次阶段测试数学试卷(解析版) 题型:解答题

已知∠MAN,AC平分∠MAN.

(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,我们可得结论:AB+AD=AC;

在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

【解】

(2)在图3中:(只要填空,不需要证明).

①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=      AC;

②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=        AC(用含α的三角函数表示)。

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年湖北黄陂北片学校八年级上第一次月考数学试卷(解析版) 题型:解答题

已知∠MAN,AC平分∠MAN。

⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°求证:AB+AD=AC;

⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

 

查看答案和解析>>

同步练习册答案